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The idea of possible linkage between tectonic processes in the lithosphere and astronomical 
factors, such as tidal forcing, irregularity of Earth rotation and Chandler wobble (pole 
displacement), has been repeatedly discussed and recently analyzed in details in the 
geophysical literature [Wahr, 1985; Gor'kavy, 1989; Chao, 1995; Avsjuk, 1996; Levin, 1996]. 
A more universal approach, which allows to estimate the influence of these factors on the 
state of the stressed lithosphere, is proposed here. We base this approach on the following 
modern model of the structure of the Earth: the Earth is a spheroid consisting of a solid crust 
and a viscous liquid filling its spherical interior, with a denser solid core inside. 

The nature of tectonic motions and driving forces, which move plates and slabs of the Earth 
crust, is still a subject of considerable discussion. Traditionally, crust motion and the forces 
that cause it are associated with various processes deep inside the Earth, such as convective 
currents, gravitational and chemical differentiation and effects of plumes [Khain, 1973; 
Zonenstein, 1993; Pushcharovsky, 1999]. 

It was also postulated that external astronomical factors may have a significant effect on the 
tectonic and seismic processes [Kant, 1756; Darwin, 1879; Mayer, 1893; Khain, 1960; 
Kropotkin, 1963; Nalivkin, 1963]. Recently, considerable attention was focused on the 
influence of the Earth core motion on the various geophysical processes [Avsjuk, 1973; 
Jacobs, 1995; Avsjuk, 1998], on the consequences of the Earth center displacement [Avsjuk, 
1999], and on the analysis of time correlation between regional seismicity and irregular 
rotation of the Earth [Gor’kavy, 1999]. Levin [1999] has analyzed the specific features of 
meridional distribution of Earth seismicity and has provided well-grounded arguments 
confirming the correlation between the seismicity and the Earth rotation. 

According to Avsjuk [1973, 1996], the solid core moves inside the liquid core subject to 
gravitational forces of Moon and Sun. Displacements of the solid core with an amplitude of 
the order of 100 m and specific periods that are known from astronomical observations 
(approximately 14, 365, 412-437 days and 6-7 years) produce displacements of the Earth 
center of gravity with the same periods and an amplitude of about 4 m. The Earth rotation axis 
follows the position of the gravity center and moves inside the Earth body. Consequently, the 
poles move as well, producing the Chandler wobble of the poles [Chandler, 1892]. These tidal 
forces also influence the tectonics of the lithosphere [Nadai, 1969; Sadovsky et al.,1987]. 

Model. We propose a model, which combines the effects of irregular Earth rotation, Chandler 
wobble and tidal forces on the stressed state of the lithosphere. Density variations in the free 
litospheric energy provide a qualitative example of such effects. These variations can be 
calculated using the linear theory of elasticity. They are represented by a stress tensor, which 
can be reconstructed from equilibrium conditions of a lithosphere element subjected to all of 
the forces. 

                                                      
∗ Translated by O. Y. Yakovenko, edited by A. B. Rabinovich and J. Cherniawsky. 
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It is convenient to write the equilibrium conditions in a rotating coordinate system. In this 
case, the revolution axis passes through the center of gravity of the Earth, and the lithosphere 
element is at rest. Let r  be the radius vector of the lithosphere element (from the origin, or the 
Earth gravity center), ρ  the density of an element, with all quantities defined per unit volume. 
The net force on a motionless element is zero: 
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Here the first term on the right side is due to the Earth gravity, the second term is the 
centrifugal force ( Ω  is the angular velocity vector of the Earth rotation), the third term is 
inertia force due to irregularity of the displacement x( )t  of the Earth center of gravitation, the 
forth term is due to the tidal forcing from any astronomical body with mass M∗ , separated 
from Earth by a distance R∗ , (γ  is the Newtonian gravitational constant, ∗a  is a relative 
acceleration between the Earth and this body),.The Coriolis force is assumed to be zero. The 
last term is the force produced by the stress in the crust and is the divergence of the stress 
tensor (where p  is the pressure): 

(2)    K r p r r r r si ik ik ik i k ik= = − + −− −∂σ ∂ σ δ δ/ , ( )2 1 23 . 

All forces, except those caused by the stress, are the gradients of the corresponding potentials 
(multiplied by the density). These potentials are: gravity Grϕ , centrifugal 
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Cent rr Ω−Ω= −ϕ , the potential of inertia forces xr DD=Inerϕ , and the tidal potential 

To make the model more realistic, we can approximate the gravity potential as a 
homogeneous ellipsoid of revolution 
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where the parameters ϕ 0 , α  and β  are chosen from the condition that the sum of gravity and 
centrifugal potentials includes the surface of the rotation ellipsoid as a level surface (in this 
case the Earth surface will be described in the same way). Here ρ 0  is mean density of the 
Earth, R  is polar radius, θ  is a latitude of the lithosphere element. 

Evaluation of the potentials. Let us evaluate the order of magnitudes of the potentials. Taking 
-2-138 sgcm107.6 −⋅=γ , -3

0 cm g5 ≈ρ , and cm104.6 8⋅≈R , we obtain 2211
G scm106.8 −⋅≈rϕ . 

For the centrifugal potential, if -15 s103.7 −⋅≈Ω , then -229221
Cent scm101.12 ⋅≈Ω≈ − Rϕ . We 

showed previously [Levin and Pavlov, 2001], that the magnitude of the potential for inertia 
force is given by -22312 scm106.210 −− ⋅≈⋅ωRy , where -17 s102 −⋅≈ω  is the angular velocity 
of the Earth revolving around the Sun, cm103≈y  is the amplitude of the Chandler wobble. 
The Moon tidal potential is expressed in the form: -224321

Tide scm108.1 2 ⋅≈≈ −
∗∗

− RRMγϕ . 
Finally, if we take into the account the irregularity of the Earth rotation (i.e. forced precession 
of 50’’ per year corresponding to the contribution of the vector with length -112 s102.1 −⋅≈ε , 
normal to the ecliptic plane, to the angular velocity Ω ) then the centrifugal potential changes 
by: -22122

Prec scm106.3 )))( ()(( ⋅≈Ω≈Ω−Ω= Rr εεεϕ rr . All other potentials have small 
effects in comparison with gravity and centrifugal potentials. These effects can be calculated 
using the framework of the perturbation theory. 
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Contribution to free energy. The expression (2) for the stress tensor is an assumption of the 
model. Its first term is related to the volume, and the second term to the shear stress. From 
linear theory of elasticity we can express the density of free energy of a lithosphere element 
as: 

(4) F K K p sll ik ll= + − = +− − − − −( ) ( ( ) ( ) ( ( / )18 4 3 2 4 2 31 2 1 2 1 2 1 2 1 2σ µ σ σ µ  )    ) . 

We can use the so-called hydrostatic approximation as a zero-th order approximation of the 
perturbation theory. In this case the stress tensor is reduced to the first volume term. The 
equilibrium conditions take into account only gravitational and centrifugal potentials but do 
not include astronomical factors. Applying a first order perturbation, we obtain a small 
contribution δ p  to the pressure, while the scalar function s is also a small quantity of the first 
order. Hence, first order contribution to the free energy due to astronomic factors can be 
written as: 

(5) δ δ  F K p p= −1 . 

The density ρ  and the pressure p are dynamic properties of the state of stress, and, generally 
speaking, depend on the vector variables r , Ω , ω , a ∗ , x( )t , and so on. If these dynamic 
characteristics can be described by analytical functions, we can conclude that they depend 
only on scalar combinations of these vector variables. We have shown previously [Levin and 
Pavlov, 2001] that the solvability condition of the equilibrium system leads us to conclude 
that this dependence is specific: the dynamic characteristics are the functions of one scalar 
variable ξ , which is simply the sum of all the potentials we used in the model. Moreover, the 
pressure is the integral of the density over this variable: 
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where ξ 0  is the value of the variable ξ  on the Earth surface. In this case, expression (5) for 
the contribution of pressure to free energy density becomes: 

(7) δ ρδ ξ  F K p= −1 , 

where TidePrecIner ϕϕϕξδ ++=  is a sum of the contributions due to gravity and centrifugal 
potentials. These account for the astronomic factors to a first-order approximation of the 
perturbation theory. 

Meridian dependence. Generally speaking, all three factors in the right part of expression (7) 
depend on latitude of the lithosphere element. However, the pressure and the density are 
calculated in the zeroth-order approximation of the perturbation theory, while their argument 
ξ  accounts only for gravity and centrifugal potentials. In this case the term proportional to 
cos2 θ  is small, of an order of 1/300 (Earth flatness), and it is possible to neglect the 
meridional dependence of pressure and density. 

We showed [Levin and Pavlov, 2001] that for a coarse approximation for the Chandler 
wobble, 

(8) y( ) (cos , ,t y t t= −ν ν  sin   0)1 , 
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where ν π/ 2  is the frequency of a mode with maximum amplitude (corresponding to the 
period of 425 days), the displacement of the center of gravity x( )t  can be approximately 
described by a similar expression (we neglect here declination differences between the Sun 
and the Moon): 

(9) x( ) (sin ) (cos , sin , cos ), cos sin cost y t t t= − =−γ ν ν γ γ δ ω1 1        , 

where π δ/ 2 −  is a tilt angle of the rotation axis to the ecliptic, γ  is an angle between the 
rotation axis and direction to the Sun (Figure 1a shows two extreme axis positions), ω  is the 
angular velocity of Earth rotation around the Sun. In this case, the variation xr DD=Inerϕ  during 
one half of the Chandler period has the form 

(10) θθθωθϕ sin6.0cos36.1) (  ,/ ,10 ), ()(= Iner
21
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This function depends on latitude and has its maximum at about 23o. 

In case of a forced precession, it is natural to estimate variation of the corresponding potential 
Precϕ  for half of a day. Two positions of the lithosphere elements separated by half a day are 

shown in Figure 1b. We then have: 
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where δ  is an angle between the equatorial plane and the ecliptic. 

Finally, the variation of the tidal potential Tideϕ  for half a day can be expressed as (see 
Figure 1b): 
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In the last two cases the latitude dependence function has its maximum at 45o. 

Integral variation of free energy. It is useful to evaluate total variation of free energy 
of the lithosphere, which is due to astronomical effects. In order to do this, we 
prescribe the dependence of density on depth and integrate (7) over the surface and the 
radius-vector r down to a certain depth h. Let assume that h = 100 km and approximate 
the density increase with depth by a linear function (the calculations show that 
correction due to non-linearity is negligible in the transition zones [Levin and Pavlov, 
2001]), 

(13) 5,4  )), /-(1 1(  ≈+= κκρρ θRrR , 

where Rρ  is the density on the surface, and ) cos 1( 2θςθ += RR  is the radius of the 
point on the surface at a given latitude. Parameter ς , which can be expressed using the 
parameters of the gravity potential, is of the order of 1/300. Then, for zero-th order in 
small parameter ς , 
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After simple calculations and for the same periods of time as in the evaluation of the 
latitude dependence, we get for Chandler wobble 24

Iner 1065.0 ⋅≈∆F erg, for forced 
precession 25

Prec 102.1 ⋅≈∆F erg, and for tidal effects 29
Tide 108.2 ⋅≈∆F erg. 

Discussion. Strictly speaking, precession and Chandler effects are not correctly 
accounted for in the first approximation of the perturbation theory. Indeed, the tidal 
potential expansion is based on the Laplace approximation, which is a leading order 
expansion in a parameter 2107.1/ −

∗ ⋅≈RR . The precession and Chandler potentials are, 
respectively, 3 and 7 orders of magnitude smaller than the tidal potential. However, we 
found it useful to present the corresponding calculations for these two factors as well. 

Latitude functions calculated from the model of free-energy density variations 
(Figure 2a) coincide quantitatively with the latitude function of power fluxes during 
earthquakes (Figure 2b). They have a minimum at the equator and maxima at mid 
latitudes. Further, a comparison of earthquake energy fluxes with total free energy 
variation shows that the total energy fluxes during earthquakes are of the order of 

erg1010 2625 − . On the other hand, according to a general theory on periodic processes in 
non-ideal continuum, there are vibrational energy dissipation due to viscosity and also 
contributions due to local defects. Existing estimates of the energy dissipation are very 
rough; they depend on the non-ideal nature of the model, and are in the range of 
10 102 3− −− . We observe that tidal variations can be one of the energy sources during 
earthquakes. 
 
Figure. 1. 
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Figure. 2. 
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The above conclusions are qualitative. The model deals with quasi-stationary lithosphere and 
only accounts for density variations with depth. It is obvious that geological structural 
heterogeneity have to influence significantly the effects from the astronomical factors. 

Let us further note that the dependence of free energy variations on the depth of the ellipsoidal 
layer, over which the density is integrated, is quadratic. It is interesting that these variations do 
not depend on model assumptions about the nature of density variations with depth. They 
depend only on the small depth of the layer relative to the Earth radius; the first terms of the 
respective ratio provide the main contribution in integral (14). The term, which is linear with 
depth, vanishes because the multiplier of this term, which is proportional to the pressure at 
zero depth, is zero. Instead, this depends on the choice of approximation of free energy in the 
linear elasticity theory. It is justified by the fact that accounting for non-linear terms (e.g. a 
cubic in free energy stress) is supposed to decrease the speed of sound with increased 
pressure, in contradiction with the actual observations in the Earth crust.. 
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