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ANNOTATION 

A nonlinear mechanism of long gravitational wave generation by bottom displacements 
(earthquakes) in a compressible water layer of constant depth is investigated analytically and 
numerically. The amplitude of the wave generated by the nonlinear mechanism is estimated as a 
function of ocean depth and of duration and velocity of bottom displacement. It is shown that this 
mechanism can provide a noticeable contribution to tsunami amplitude. 

INTRODUCTION 

Traditional view on tsunami generation mechanism is usually linked to a sudden displacement 
of water by residual bottom deformations during strong underwater earthquakes. 
Mathematical description of the tsunami generation often assumes that the bottom 
deformation is an instant process. At first sight, such approach is quite adequate because the 
duration τ of bottom deformation ( 20 1010 <τ<  sec) is always less than the time during 
which a long gravitational wave propagates over a tsunami source length scale L 
( 32/1 10~)gH(L −  sec, where H is ocean depth, g is acceleration due to gravity). Nevertheless, 
during rapid bottom movements ( 10~Hc4 1−<τ  sec, where c is sound velocity in water) the 
water layer behaves as a compressible fluid [Nosov, 1999], and therefore the assumption of 
instantaneous bottom deformation is no longer acceptable. 

The main response of a compressible water layer from bottom deformation are elastic 
oscillations, which are caused by repeated reflections of an acoustic impulse from bottom and 
top surfaces. Tsunami generation mechanism linked to such “rectification” of acoustic waves 
in ocean was reported for the first time in Novikova and Ostrovsky [1982]. 

The non-linear mechanism of generation of gravitational waves due to bottom oscillations in 
incompressible ocean was initially described in Nosov and Skachko [2001]. The present study 
is aimed to estimate the contribution of non-linear effects to tsunami amplitude in a case when 
the wave is generated in a compressible ocean by bottom deformations. 

BASIC MATHEMATICAL MODEL 

The mathematical model is based on the non-linear hydrodynamic equations 
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It is assumed that fluid velocity consists of variable (fast) and time averaged (slow) terms 
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Substituting expressions (3) into equations (1) and (2) and averaging these equations in time 
we obtained 
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When deriving equations (4) and (5) we neglected the non-linear term ( ) v,v �� ∇  and assumed 
that the averaged fluid motion as incompressible. The non-linearity of equations (1) and (2) 
introduces additional terms in the time-averaged flow equations (4) and (5). These additional 
terms " f

�

" and "s" can be interpreted as external mass force and distributed mass source. In 
what follows, we consider " f

�

" and "s" as a non-linear tsunami source. 

In order to calculate fields " f
�

" and "s", given by (6) and (7), the following functions need to 
be determined: v′� , p′ , and ρ′ . Let us obtain these functions from a solution of an auxiliary 
linear problem of a linear response of compressible fluid to bottom deformations. 

AUXILIARY LINEAR PROBLEM 

Let us consider an ideal compressible homogeneous fluid layer of constant depth H. The 
origin of the Cartesian coordinate system OXZ is on the unperturbed free surface, with the OZ-
axis oriented vertically upward. Small amplitude vertical bottom displacements )t,x(η  act as 
the wave source. This problem is solved using velocity potential F of the fluid: 
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and the unknown functions are expressed in terms the velocity potential: 
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We have assumed a separable function for bottom 
displacements: )t()x()t,x( ηη=η . In all cases the spatial 
distribution of bottom displacements )x(η  remains the 
same, whereas two different time-histories )t(η were used: 
“piston” (bottom motions with residual displacements) and 
“membrane” (without residual displacements) were used. 
The corresponding functions )x(η  and )t(η  are shown on 
Figure 1. 

Equations (8) – (10) were solved numerically using a finite-
difference method [Nosov and Kolesov, 2002]. 

GENERATION OF LONG GRAVITATIONAL WAVES  BY 
A NON-LINEAR SOURCE 

Generation of gravitational waves by joint action of the 
external mass force { }zx f,ff =

�

 and the distributed mass 
source was described using the framework of the long-wave 
linear theory. Neglecting vertical acceleration and integrating 
the equations (4) and (5) along the vertical coordinate from 
bottom up to free surface, we get the wave equation in terms 
of free surface displacements ξ: 
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NORMAL MODE STRUCTURE OF WATER LAYER ELASTIC OSCILL
LINEAR TSUNAMI SOURCE 

Certain conclusions about the properties of fields f
�

 and s a
generation of long waves can be reached analytically as follow
water layer exhibit a normal mode structure and all the unknow
depend on the fluid velocity potential. 

In the beginning, let us consider a rather simple case of acous
vectors. This corresponds to a "central" area of the tsunami
remains horizontal and moves uniformly in a vertical directio
one-dimensional (along vertical axis Oz) motion. The considered
the free surface and below by the absolutely rigid bottom. Theref
this domain can be represented as a superposition of norma
spectrum 
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j
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Figure 1. Time-spatial 
history of bottom dis-
placements: (a) “piston” 
bottom displacements, 
(b) “membrane” bottom 
displacements. 
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where jn  is a vertical component of the wave vector and jω  is its normal frequency. 

Substituting in formula (6) ρ′′′′ иp,w,u , expressed in terms of the fluid velocity potential 
(14) we obtain 
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Terms of the series (17) with indexes j and k oscillate in time with frequencies 
)kj(Hc 1

kj −π=ω−ω −  or )kj1(Hc 1
kj ++π=ω+ω − . It should be noted, that expressions 

(17) need to be averaged over a period 00 /2T ωπ=  and all the terms with kj ≠  vanish. This 
allows us to do the summation in (17) over a single index. Finally, we obtain 
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Equation (18) shows that for j=0, the vertical component of the force is negative 
( 0zH >>− ). As for the modes 0j > , the function zf  alternates in sign. But, when integrated 
along vertical coordinate, zf  contributes a long wave (formula (13)) as a force directed 
downward. The value of the integral is negative, independently on the index j. 

In order to calculate the mass sources s, we considered the vector under the divergence 
operator in (7). The horizontal component of the vector is obviously zero. The vertical 
component is expressed through velocity potential: 
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Substituting the fluid velocity potential (14) in expression (19), we obtain 
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Regardless of the coincidence in indices j and k, averaging expression (20) in time gives zero. 
Thus in the case of elastic modes with vertically directed wave vectors, mass sources of non-
linear origin do not produce long gravitational waves. 

Now, let us estimate the contribution of non-linear effects, while taking into account acoustic 
modes that have wave vectors with horizontal components (propagating modes). In this case, 
the compressible fluid layer is infinite along the horizontal axis Ox, whereas the layer is 
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bounded above and below by a free surface and absolutely rigid bottom, respectively. The 
elementary theory of wave guides [Brekhovskikh and Goncharov, 1994] points to elastic 
oscillations of a semi-bounded domain having a continuous frequency spectrum. Thus any 
elastic motion can be expressed as a superposition of normal waves 
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22
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where jm  is the horizontal component of the wave vector, and jn  is its vertical component 
(equation (15)). According to (22), only a finite number of modes of a fixed frequency ω  can 
propagate in horizontal direction. These are called the “propagating modes”. For certain 
modes jm  is imaginary. Such modes decrease exponentially and thus cannot propagate along 
the axis Ox. 

Expressing functions ρ′′′′ иp,w,u  in terms of the velocity potential (21), we obtain 
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It is important to stress here that elastic waves, with frequencies smaller than a minimum 
critical frequency do not exist, i.e. for 01 ω>ω  and 02 ω>ω . Replacing in (23)-(25) the 
products of "sin" and "cos" with sums of trigonometric functions, we get terms that oscillate 
with frequencies 21 ω+ω  and 21 ω−ω . While averaging expression (25) in time, the terms 
with frequencies 21 ω+ω  vanish. At the same time, the terms with frequencies 21 ω−ω  
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provide a nonzero contribution, but only if 021 ω<ω−ω . 
Thus the domain of integration (Fig. 2) is a narrow band about 
the line 21 ω=ω . 

According to (13), the following three values contribute to the 
generation of long gravitational waves: 
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Omitting intermediate steps, we get the final expressions: 
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When deriving the expressions (27)-(29), the following formulas and assumptions were used: 
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which is a series expansion of (22) subject to condition ω<<ω∆ . 

Figure 2. The domain of 
integration. 
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Expressions (26)-(28) allow us to 
conclude that the vertical 
component of the force zf  always 
dominates in the generation of 
long waves, whereas the 
contributions of the horizontal 
component xf  and the distributed 
mass source s are negligible 
( 1/~X" /"“Z” >>ω∆ω , 

1m/n~"S/""Z" 22 >> ). In 
addition, expressions (26)-(28) 
testify to "non-linear tsunami 
source" propagation in horizontal 
direction with group velocity of an 
acoustic mode. 

RESULTS AND DISCUSSION 

The conclusions reached from 
analytical assumptions in the 
previous section are also 
confirmed by numerical calcu-
lations. Fig. 3 shows spatial distri-
bution of mass force f

�

, calculated 
for three consecutive moments of 
time. It is seen that f

�

 is directed 
vertcally downwards almost every-
where. 

 

Figure 3. Evolution of the mass force field f
�

. 
Calculations were carried out for “piston” bottom 
displacement with τ=8s, L=50km, H=4km. 

Figure 4. Time history of the abso-
lute value of the mass force f

�

 in the 
centre of source area at a depth z=2 
km. Calculations were carried out 
for a “piston” bottom displacement 
with τ=8s, L=50km, H=4km. 

Figure 5. Gravitational wave generated 
by non-linear tsunami source at time 
t=400 H/c. Calculations were performed 
for a “piston” bottom displacement with 
τ=8s, L=50km, H=4km. 
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We get an idea about the absolute value of the force on Fig. 4, which shows a time-history of the module 
f
�

 on the centre of the active area at a depth of 2 km. As it follows from this figure, intensity of "non-
linear tsunami source" reaches a maximum after a finite time, and not immediately. Therefore, as elastic 
waves leave the source area, the intensity of the non-linear tsunami source decreases. 

A typical gravitational wave, formed by a non-linear 
source, is presented on Fig. 5. This wave was 
calculated from a solution of equation (12). The wave 
consists of a positive leading crest and a rather long 
negative tail. The amplitude of the wave is given by 

g/v 2
max , where maxv  is the maximum velocity of 

the bottom motion. It is easy to estimate that in the 
case of the maximum bottom movement velocity of 
~1 m/s, the non-linear effect generates long wave with 
an amplitude of ~0.1m. This is significant amplitude 
for a tsunami in an open ocean. 

The maximum wave amplitude generated by non-
linear mechanism is plotted on Fig. 6 as a function of 
the duration of bottom displacement. This dependence 
is calculated for three different ocean depths in the 
cases of “piston” and “membrane” bottom motions. 
Because of the non-linear (acoustic) effects, increasing 
the ocean depth leads to larger wave amplitudes. The 
“membrane” bottom movements can generate waves 
of greater amplitude than the “piston” ones. 

In conclusion, it is important to note that under 
“piston” bottom movements the non-linear 

m
H
d
w

A

T
6

B
B

N

N
S

N
a

N
O

Figure 6. Amplitude of gravitational 
wave generated by non-linear tsunami 
source as a function of duration of the 
bottom displacement. Calculations 
were done for several ocean depths, 
H=2, 4, and 6 km, and source length of 
L=50 km. Thick line marks the 
“piston” bottom displacement, thin 
line – the “membrane" bottom 
displacement.
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echanism can lead to observable, though not dominant contribution to the tsunami amplitude. 
owever, the non-linear effects can play a dominant role during quick bottom motions without residual 
isplacements, when the traditional linear mechanism is not able to effectively generate gravitational 
aves. 
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