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ABSTRACT 

The runup of long waves on the sloping planes is described by the analytical solutions of the long 
wave equations with special initial conditions, proper approximations and boundary conditions. 
These studies are also verified by experimental data. It is convenient to test the numerical methods 
by comparing with analytical results. In this paper, the propagation and coastal amplification of 
solitary wave on a sloping plane is investigated numerically. The computed shape and amplitude 
evolution on the plane slope are compared with the existing analytical and experimental results. 
The performance of the numerical method is also discussed. 

1. INTRODUCTION 

The motions of long waves at shallower depths near the shoreline, run-up and the following 
inundation have been studied using theoretical, experimental and numerical approaches. 
Various analytical solutions for runup of nonlinear waves on plane slopes have been given by 
Shuto (1967); Gjevik & Pedersen [1981]; Pedersen and Gjevik, [1983]; Kim et. al., [1983]; 
Synolakis [1987]; Pelinovsky and Mazova [1992]; Synolakis and Skjelbreia, [1993]; 
Pelinovsky et al., [1996]; Kanoglu, [1996]; Kanoglu and Synolakis, [1997]; Lin et. al., 
[1999]; Carrier and Yeh, [2002]. In analytical approaches the runup problem is studied either 
by using empirical formulae or by solving the governing equations for specific initial and 
boundary conditions. Experimental data on runup of solitary waves are given among others by 
Hall and Watts, [1953], Pedersen and Gjevik, [1983] and Synolakis [1987], Shankar and 
Jayaratne, [2002], Lee and Raichlen, [2002]. 

A detailed analytical and experimental study on the runup and amplitude evolution of solitary 
waves on plane beaches is given in Synolakis, [1987]. An exact solution to an approximate 
theory for non-breaking solitary waves was introduced to derive the maximum runup 
asymptotically. Laboratory experiments had been performed to support the theory and the 
satisfactory prediction of the climb of the wave on the slope and maximum runup by linear 
theory has been determined. Pelinovsky and Mazova [1992] investigated tsunami runup on a 
beach with two different parameters; the angle of bottom slope and the breaking parameter. 

Titov, Synolakis, [1995a, 1995b, 1998], Imamura [1995], Yalciner et al., [2001[, Hubbard, 
Dodd, [2002[, Lynett et. al., [2002[, Lee and Raichlen, [2002[, Maiti and Sen, [1999[ are 
some references of numerical studies on long wave runup. The computer program, TUNAMI-
N2, used for the simulation of the propagation of long waves is developed by Prof. Imamura 
in Disaster Control Research Center in Tohoku University, Japan. TUNAMI-N2 is one of the 
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key tools for developing studies for propagation and coastal amplification of tsunamis in 
relation to different initial conditions. It solves the nonlinear form of long-wave equations and 
depth averaged velocities with bottom friction by finite difference technique for the basins of 
irregular shape and bathymetry and provides us a very convenient tool to simulate tsunamis. 
Shuto, Goto and Imamura (1990), Goto and Ogawa, [1992], Imamura, (1995), Goto et. al. 
[1997], Yalciner et. al., [2001], Yalciner et. al., [2002] are some of the studies used 
TUNAMI-N2. 

In this study particularly, the behavior of solitary wave on a sloping beach and the runup 
phenomenon by the non-linear numerical modeling (TUNAMI-N2) is studied. The shape of 
the solitary wave on the plane slope, the maximum positive amplitudes near the coastline are 
computed and compared with the analytical and experimental results [Demirbas, 2002]. 

2. NUMERICAL APPLICATION WITH SOLITARY WAVE 

A solitary wave centered at a location x = X1 when t = 0 has the following surface profile: 
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Where H is the amplitude of solitary wave, d is the water depth at the toe of the sloping plane, 
X1 is the distance from the specified location. 

The linearized long wave equations for the canonical problem are solved by Synolakis, (1987) 
and the runup law is derived for the non-breaking solitary waves. 
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where R is the runup of solitary waves, β is the angle of sloping plane with horizontal. 

The breaking condition of solitary waves on a sloping plane is presented by Gjevik & 
Pedersen [1981]: 
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This criterion has been reported to be in excellent agreement with laboratory data for solitary 
waves by Synolakis, [1987]. 

The canonical problem named by Tadepalli and Synolakis [1994], in wave runup is the 
determination of the runup of a long wave propagating over a constant depth region and then 
climbing up a sloping beach of constant slope. There are a few numbers of studies for 
different wave profiles on the canonical problem. We selected the canonical problem with a 
regular shaped basin of 10 km length and width. The water depth of the horizontal bottom is 
chosen as 30 m. On one side of the basin the plane beach is located with bottom slope of 1/20. 
The other boundaries are selected as open boundaries. The cross section of the basin along x 
direction is shown in Fig. 1. The initial wave is inputted near the center of the basin where the 
wave crest is parallel to the shoreline (along z axis) and thus the wave propagation is forced 
along x direction towards shore without dispersion. 
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Figure 1. Cross Section of the Basin, Location of the Initial Solitary Wave 
and the Gauge Locations where the Water Surface Elevations are 
Computed. 
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of the calculated maximum water elevation near the shoreline obtained by the 
odel with finite difference method does not coincide with the location of the 
  In the numerical model, the elevation of the water is computed at the fixed 
rid points. Obviously the smaller grid sizes result nearer maximum elevations to 
 In this application the smallest possible grid size is selected to obtain optimum 
d to obtain best possible comparison between experimental/ analytical and 
sults. The grid size and time step are selected as 20 m and 0.25 seconds 
in order to satisfy stability in computation. The time histories of water surface 
 different locations, the sea state at different time steps, the snapshots of the 
e along the axis of wave propagation at specified time step, the maximum water 
ched at every grid point throughout the domain during the simulation are 

d stored. By using the stored data the shape of the wave at different locations on 
 the water surface along the axis of wave direction at specified time steps are 
he following. The results are compared with the analytical and experimental data 
[1987]. 

o cases presented in Synolakis [1987]. They are also selected in this application. 
s, the normalized height of incoming wave, (H/d) is 0.019 (non-breaking) and 
ng). 

ed water surface elevation (η) representing the climb of solitary wave at the toe 
and at the shoreline for the non-breaking case on the 1:19.85 slope are shown in 
ction of the dimensionless time. As seen from this Figure that the numerical 
tes fairly consistent water surface fluctuation with experimental and analytical 

on is extended to check the water surface profile along the axis of propagation at 
ensionless time steps. The water surface profiles at different dimensionless time 
n in Fig. 3 and 4. As seen from these figures that the numerical model provides 
nt shape of the wave and amplitude evolution on the plane slope with the 

d experimental results, especially on the wet part of the slope for the both 
 non-breaking conditions of incoming solitary wave. 
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The numerical experiments are repeated by 
using different incoming solitary waves. 
The normalized maximum positive wave 
amplitudes near the shoreline are computed 
for each experiment. The comparison of 
numerical data with the runup law and 
experimental data of Synolakis [1987] is 
given in Fig. 5. This figure shows that the 
distribution of the data points of numerical 
results show similar trend with the 
analytical and experimental data, but the 
numerical results stay below the others. The 
underestimation of maximum amplitude in 
numerical results comes from fixed grid size 
of the numerical solution. 

 
Figure 2. The normalized water surface elevation 
representing the climb of solitary wave at x = 
19.85 (at the toe of the slope), and at x = 0.25 (at 
the shoreline) with H/d = 0.019 up a 1:19.85 
slope as function of the dimensionless time. (---------  
experimental [Synolakis, 1987]; -----, analytical 
[Synolakis, 1987]; -----------, numerical – this study). 

Figure 3. The normalized water surface 
profile representing the climb of solitary 
wave along the wave direction with 
H/d = 0.019 up a 1:19.85 slope as 
function of the normalized distance at 
different dimensionless time steps, 
(a) t = 25, (d) t = 40, (g) t = 55, (i) t = 65. 
(...., experimental [Synolakis, 1987]; 
____-, analytical [Synolakis, 1987]; -------- , 
numerical – this study). 

Figure 4. The normalized water sur-
face profile representing the climb 
of solitary wave along the wave 
direction with H/d = 0.040 up a 
1:19.85 slope as function of the nor-
malized distance at different dimen-
sionless time steps, (a) t=20, (c) 
t=32, (e) t=44, (g) t=56. [...., experi-
mental [Synolakis, 1987]; _____-, 
analytical [Synolakis, 1987]; -----------  , 
numerical – this study). 
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3. DISCUSSIONS OF RESULTS 

The analytical results do not cover the non-
linear terms of the long wave equations. Lin 
et al., [1999] states that the numerical results 
of the depth averaged equations models 
predict smaller value of runup tongue. 
However analytical approach is consistent 
with the experimental results. Therefore it is 
shown that the numerical approach computes 
satisfactory agreement of water motion when 
the wave climbs on the slope. But the 
computation gives smaller runup on the 
slope at land. 
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